Aristotle



Physics

Book VI
Chapter 1




Table of Contents

Catalogue of Titles




Logos Virtual Library



Catalogue

Aristotle (384-322 BC)

Physics

Translated by R. P. Hardie and R. K. Gaye

Book VI

Chapter 1


Now if the terms ‘continuous,’ ‘in contact,’ and ‘in succession’ are understood as defined above things being ‘continuous’ if their extremities are one, ‘in contact’ if their extremities are together, and ‘in succession’ if there is nothing of their own kind intermediate between them—nothing that is continuous can be composed ‘of indivisibles’: e.g. a line cannot be composed of points, the line being continuous and the point indivisible. For the extremities of two points can neither be one (since of an indivisible there can be no extremity as distinct from some other part) nor together (since that which has no parts can have no extremity, the extremity and the thing of which it is the extremity being distinct).

Moreover, if that which is continuous is composed of points, these points must be either continuous or in contact with one another: and the same reasoning applies in the case of all indivisibles. Now for the reason given above they cannot be continuous: and one thing can be in contact with another only if whole is in contact with whole or part with part or part with whole. But since indivisibles have no parts, they must be in contact with one another as whole with whole. And if they are in contact with one another as whole with whole, they will not be continuous: for that which is continuous has distinct parts: and these parts into which it is divisible are different in this way, i.e. spatially separate.

Nor, again, can a point be in succession to a point or a moment to a moment in such a way that length can be composed of points or time of moments: for things are in succession if there is nothing of their own kind intermediate between them, whereas that which is intermediate between points is always a line and that which is intermediate between moments is always a period of time.

Again, if length and time could thus be composed of indivisibles, they could be divided into indivisibles, since each is divisible into the parts of which it is composed. But, as we saw, no continuous thing is divisible into things without parts. Nor can there be anything of any other kind intermediate between the parts or between the moments: for if there could be any such thing it is clear that it must be either indivisible or divisible, and if it is divisible, it must be divisible either into indivisibles or into divisibles that are infinitely divisible, in which case it is continuous.

Moreover, it is plain that everything continuous is divisible into divisibles that are infinitely divisible: for if it were divisible into indivisibles, we should have an indivisible in contact with an indivisible, since the extremities of things that are continuous with one another are one and are in contact.

The same reasoning applies equally to magnitude, to time, and to motion: either all of these are composed of indivisibles and are divisible into indivisibles, or none. This may be made clear as follows. If a magnitude is composed of indivisibles, the motion over that magnitude must be composed of corresponding indivisible motions: e.g. if the magnitude ΑΒΓ is composed of the indivisibles Α, Β, Γ, each corresponding part of the motion ΔΕΖ of Ο over ΑΒΓ is indivisible. Therefore, since where there is motion there must be something that is in motion, and where there is something in motion there must be motion, therefore the being-moved will also be composed of indivisibles. So Ο traversed Α when its motion was Δ, Β when its motion was Ε, and Γ similarly when its motion was Ζ. Now a thing that is in motion from one place to another cannot at the moment when it was in motion both be in motion and at the same time have completed its motion at the place to which it was in motion: e.g. if a man is walking to Thebes, he cannot be walking to Thebes and at the same time have completed his walk to Thebes: and, as we saw, Ο traverses a the partless section Α in virtue of the presence of the motion Δ. Consequently, if Ο actually passed through Α after being in process of passing through, the motion must be divisible: for at the time when Ο was passing through, it neither was at rest nor had completed its passage but was in an intermediate state: while if it is passing through and has completed its passage at the same moment, then that which is walking will at the moment when it is walking have completed its walk and will be in the place to which it is walking; that is to say, it will have completed its motion at the place to which it is in motion. And if a thing is in motion over the whole ΑΒΓ and its motion is the three Δ, Η, and Ζ, and if it is not in motion at all over the partless section Α but has completed its motion over it, then the motion will consist not of motions but of starts, and will take place by a thing’s having completed a motion without being in motion: for on this assumption it has completed its passage through Α without passing through it. So it will be possible for a thing to have completed a walk without ever walking: for on this assumption it has completed a walk over a particular distance without walking over that distance. Since, then, everything must be either at rest or in motion, and Ο is therefore at rest in each of the sections Α, Β, and Γ, it follows that a thing can be continuously at rest and at the same time in motion: for, as we saw, Ο is in motion over the whole ΑΒΓ and at rest in any part (and consequently in the whole) of it. Moreover, if the indivisibles composing ΔΕΖ are motions, it would be possible for a thing in spite of the presence in it of motion to be not in motion but at rest, while if they are not motions, it would be possible for motion to be composed of something other than motions.

And if length and motion are thus indivisible, it is neither more nor less necessary that time also be similarly indivisible, that is to say be composed of indivisible moments: for if the whole distance is divisible and an equal velocity will cause a thing to pass through less of it in less time, the time must also be divisible, and conversely, if the time in which a thing is carried over the section Α is divisible, this section Α must also be divisible.





Book V
Chapter 6


Book VI
Chapter 2