Aristotle



Posterior Analytics

Book I
Chapter 10




Table of Contents

Catalogue of Titles




Logos Virtual Library



Catalogue

Aristotle (384-322 BC)

Posterior Analytics

Translated by G. R. G. Mure

Book I

Chapter 10


I call the basic truths of every genus those elements in it the existence of which cannot be proved. As regards both these primary truths and the attributes dependent on them the meaning of the name is assumed. The fact of their existence as regards the primary truths must be assumed; but it has to be proved of the remainder, the attributes. Thus we assume the meaning alike of unity, straight, and triangular; but while as regards unity and magnitude we assume also the fact of their existence, in the case of the remainder proof is required.

Of the basic truths used in the demonstrative sciences some are peculiar to each science, and some are common, but common only in the sense of analogous, being of use only in so far as they fall within the genus constituting the province of the science in question.

Peculiar truths are, e.g. the definitions of line and straight; common truths are such as ‘take equals from equals and equals remain’. Only so much of these common truths is required as falls within the genus in question: for a truth of this kind will have the same force even if not used generally but applied by the geometer only to magnitudes, or by the arithmetician only to numbers. Also peculiar to a science are the subjects the existence as well as the meaning of which it assumes, and the essential attributes of which it investigates, e.g. in arithmetic units, in geometry points and lines. Both the existence and the meaning of the subjects are assumed by these sciences; but of their essential attributes only the meaning is assumed. For example arithmetic assumes the meaning of odd and even, square and cube, geometry that of incommensurable, or of deflection or verging of lines, whereas the existence of these attributes is demonstrated by means of the axioms and from previous conclusions as premisses. Astronomy too proceeds in the same way. For indeed every demonstrative science has three elements: (1) that which it posits, the subject genus whose essential attributes it examines; (2) the so-called axioms, which are primary premisses of its demonstration; (3) the attributes, the meaning of which it assumes. Yet some sciences may very well pass over some of these elements; e.g. we might not expressly posit the existence of the genus if its existence were obvious (for instance, the existence of hot and cold is more evident than that of number); or we might omit to assume expressly the meaning of the attributes if it were well understood. In this way the meaning of axioms, such as ‘Take equals from equals and equals remain’, is well known and so not expressly assumed. Nevertheless in the nature of the case the essential elements of demonstration are three: the subject, the attributes, and the basic premisses.

That which expresses necessary self-grounded fact, and which we must necessarily believe, is distinct both from the hypotheses of a science and from illegitimate postulate – I say ‘must believe’, because all syllogism, and therefore a fortiori demonstration, is addressed not to the spoken word, but to the discourse within the soul, and though we can always raise objections to the spoken word, to the inward discourse we cannot always object. That which is capable of proof but assumed by the teacher without proof is, if the pupil believes and accepts it, hypothesis, though only in a limited sense hypothesis – that is, relatively to the pupil; if the pupil has no opinion or a contrary opinion on the matter, the same assumption is an illegitimate postulate. Therein lies the distinction between hypothesis and illegitimate postulate: the latter is the contrary of the pupil’s opinion, demonstrable, but assumed and used without demonstration.

The definitions – viz. those which are not expressed as statements that anything is or is not – are not hypotheses: but it is in the premisses of a science that its hypotheses are contained. Definitions require only to be understood, and this is not hypothesis – unless it be contended that the pupil’s hearing is also an hypothesis required by the teacher. Hypotheses, on the contrary, postulate facts on the being of which depends the being of the fact inferred. Nor are the geometer’s hypotheses false, as some have held, urging that one must not employ falsehood and that the geometer is uttering falsehood in stating that the line which he draws is a foot long or straight, when it is actually neither. The truth is that the geometer does not draw any conclusion from the being of the particular line of which he speaks, but from what his diagrams symbolize. A further distinction is that all hypotheses and illegitimate postulates are either universal or particular, whereas a definition is neither.





Book I
Chapter 9


Book I
Chapter 11