Aristotle



Posterior Analytics

Book II
Chapter 5




Table of Contents

Catalogue of Titles




Logos Virtual Library



Catalogue

Aristotle (384-322 BC)

Posterior Analytics

Translated by G. R. G. Mure

Book II

Chapter 5


Nor, as was said in my formal logic, is the method of division a process of inference at all, since at no point does the characterization of the subject follow necessarily from the premising of certain other facts: division demonstrates as little as does induction. For in a genuine demonstration the conclusion must not be put as a question nor depend on a concession, but must follow necessarily from its premisses, even if the respondent deny it. The definer asks ‘Is man animal or inanimate?’ and then assumes – he has not inferred – that man is animal. Next, when presented with an exhaustive division of animal into terrestrial and aquatic, he assumes that man is terrestrial. Moreover, that man is the complete formula, terrestrial-animal, does not follow necessarily from the premisses: this too is an assumption, and equally an assumption whether the division comprises many differentiae or few. (Indeed as this method of division is used by those who proceed by it, even truths that can be inferred actually fail to appear as such.) For why should not the whole of this formula be true of man, and yet not exhibit his essential nature or definable form? Again, what guarantee is there against an unessential addition, or against the omission of the final or of an intermediate determinant of the substantial being?

The champion of division might here urge that though these lapses do occur, yet we can solve that difficulty if all the attributes we assume are constituents of the definable form, and if, postulating the genus, we produce by division the requisite uninterrupted sequence of terms, and omit nothing; and that indeed we cannot fail to fulfil these conditions if what is to be divided falls whole into the division at each stage, and none of it is omitted; and that this – the dividendum – must without further question be (ultimately) incapable of fresh specific division. Nevertheless, we reply, division does not involve inference; if it gives knowledge, it gives it in another way. Nor is there any absurdity in this: induction, perhaps, is not demonstration any more than is division, yet it does make evident some truth. Yet to state a definition reached by division is not to state a conclusion: as, when conclusions are drawn without their appropriate middles, the alleged necessity by which the inference follows from the premisses is open to a question as to the reason for it, so definitions reached by division invite the same question.

Thus to the question ‘What is the essential nature of man?’ the divider replies ‘Animal, mortal, footed, biped, wingless’; and when at each step he is asked ‘Why?’, he will say, and, as he thinks, proves by division, that all animal is mortal or immortal: but such a formula taken in its entirety is not definition; so that even if division does demonstrate its formula, definition at any rate does not turn out to be a conclusion of inference.





Book II
Chapter 4


Book II
Chapter 6